Frobenius–schur Indicators of Unipotent Characters and the Twisted Involution Module

نویسندگان

  • MEINOLF GECK
  • GUNTER MALLE
چکیده

Let W be a finite Weyl group and σ a non-trivial graph automorphism of W . We show a remarkable relation between the σ-twisted involution module for W and the Frobenius–Schur indicators of the unipotent characters of a corresponding twisted finite group of Lie type. This extends earlier results of Lusztig and Vogan for the untwisted case and then allows us to state a general result valid for any finite group of Lie type. Inspired by recent work of Marberg, we also formally define Frobenius–Schur indicators for “unipotent characters” of twisted dihedral groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Subpairs and Frobenius-schur Indicators of Characters in 2-blocks

Let B be a real 2-block of a finite group G. A defect couple of B is a certain pair (D, E) of 2-subgroups of G, such that D a defect group of B, and D ≤ E. The block B is principal if E = D; otherwise [E : D] = 2. We show that (D, E) determines which B-subpairs are real. The involution module of G arises from the conjugation action of G on its involutions. We outline how (D, E) influences the v...

متن کامل

Twisted Exponents and Twisted Frobenius–schur Indicators for Hopf Algebras

Classically, the exponent of a group is the least common multiple of the orders of its elements. This notion was generalized by Etingof and Gelaki to the context of Hopf algebras. Kashina, Sommerhäuser and Zhu later observed that there is a strong connection between exponents and Frobenius– Schur indicators. In this paper, we introduce the notion of twisted exponents and show that there is a si...

متن کامل

Twisted Frobenius–schur Indicators for Hopf Algebras

The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...

متن کامل

Duality, Central Characters, and Real-valued Characters of Finite Groups of Lie Type

We prove that the duality operator preserves the Frobenius–Schur indicators of characters of connected reductive groups of Lie type with connected center. This allows us to extend a result of D. Prasad which relates the Frobenius–Schur indicator of a regular real-valued character to its central character. We apply these results to compute the Frobenius–Schur indicators of certain real-valued, i...

متن کامل

Hopf Automorphisms and Twisted Extensions

We give some applications of a Hopf algebra constructed from a group acting on another Hopf algebra A as Hopf automorphisms, namely Molnar’s smash coproduct Hopf algebra. We find connections between the exponent and Frobenius-Schur indicators of a smash coproduct and the twisted exponents and twisted Frobenius-Schur indicators of the original Hopf algebra A. We study the category of modules of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013